CBSE Class 09 Mathematics

Revision Notes

CHAPTER - 2

POLYNOMIALS

- 1. Polynomials in one Variable
- 2. Zeroes of a Polynomial
- 3. Remainder Theorem
- 4. Factorisation of Polynomials
- 5. Algebraic Identities

Constants: A symbol having a fixed numerical value is called a constant.

Variables: A symbol which may be assigned different numerical values is known as variable.

Algebraic expressions: A combination of constants and variables connected by some or all of the operations +, -, *,/ is known as algebraic expression.

Terms : The several parts of an algebraic expression separated by '+' or '-' operations are called the terms of the expression.

Polynomials: An algebraic expression in which the variables involved have only nonnegative integral powers is called a polynomial.

- (i) $5x^2 4x^2 6x 3$ is a polynomial in variable x.
- (ii) $5 + 8x^{\frac{3}{2}} + 4x^{-2}$ is an expression but not a polynomial.

Polynomials are denoted by p(x), q(x) and r(x) etc.

Coefficients: In the polynomial $x^3 + 3x^2 + 3x + 1$,, coefficient of x^3 , x^2 , x are 1, 3, 3 respectively and we also say that +1 is the constant term in it.

Degree of a polynomial in one variable: In case of a polynomial in one variable the highest power of the variable is called the degree of the polynomial. A polynomial of degree n has n roots.

Classification of polynomials on the basis of degree.

degree	Polynomial	Example
(a) 1	Linear	$x+1, \ 2x+3 etc.$
(b) 2	Quadratic	$ax^2 + bx + c$ etc.
(c) 3	Cubic	$x^3 + 3x^2 + 1$ etc.
(d) 4	Biquadratic	$x^4 - 1$

Classification of polynomials on the basis of number of terms

No. of terms	Polynomial & Examples.
(i) 1	Monomial - $5,3x,rac{1}{3}y$ $etc.$
(ii) 2	Binomial - $(3+6x)$, $(x-5y)$ etc.
(iii) 3	Trinomial- $2x^2 + 4x + 2$ etc.

Constant polynomial: A polynomial containing one term only, consisting a constant term is called a constant polynomial. The degree of non-zero constant polynomial is zero.

Zero polynomial: A polynomial consisting of one term, namely zero only is called a zero polynomial.

The degree of zero polynomial is not defined.

Zeroes of a polynomial: Let p(x) be a polynomial. If p(a) =0, then we say that "a" is a zero of the polynomial of p(x).

Remark : Finding the zeroes of polynomial p(x) means solving the equation p(x)=0.

Remainder theorem: Let f(x) be a polynomial of degree $n\geqslant 1$ and let a be any real number. When f(x) is divided by (x-a) then the remainder is f(a)

Factor theorem: Let f(x) be a polynomial of degree n > 1 and let a be any real number.

If f(a) = 0 then, (x - a) is factor of f(x)

If f(x - a) is factor of f(x) then f(a) = 0

Factor: A polynomial p(x) is called factor of q(x) divides q(x) exactly.

Factorization: To express a given polynomial as the product of polynomials each of degree less than that of the given polynomial such that no such a factor has a factor of lower degree, is called factorization.

Some algebraic identities useful in factorization:

(i)
$$(x+y)^2 = (x)^2 + 2xy + (y)^2$$

(ii)
$$(x-y)^2 = (x)^2 - 2xy + (y)^2$$

(iii)
$$x^2-y^2 = (x-y)(x+y)$$

(iv)
$$(x+a)(x+b)=(x)^2+(a+b)x+ab$$

$$(v)(x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

(vi)
$$(x+y)^3 = x^3 + y^3 + 3xy(x+y)$$

(vii)
$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

(viii)
$$x^3 + y^3 + z^3$$
 - 3xyz =(x+y+z) ($x^2 + y^2 + z^2$ - xy - yz - zx)

$$x^3 + y^3 + z^3 = 3xyz$$
 if x+y+z=0

(ix)
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

(x)
$$a^3 - b^3 = (a - b) (a^2 + ab + b^2)$$